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Abstract

Generalization of learned knowledge to new contexts is essential for adaptive behavior. Despite
extensive research on the brain plasticity mechanisms underlying learning specificity, the
mechanisms that facilitate generalization remain poorly understood. Here, we investigate
whether using brain stimulation to disrupt offline consolidation in visual cortex promotes
learning generalization. Separate groups of participants (N = 144) were trained on visual
detection tasks using either a reactivation-based protocol or conventional full-practice,
combined with anodal or sham transcranial direct current stimulation (tDCS) over the visual
cortex. Strikingly, only combination of reactivation-based learning with anodal tDCS produced
complete generalization from trained to untrained stimuli, an effect consistently replicated
across features (orientation, motion direction). In contrast, reactivation-based learning alone
and conventional full-practice — whether with or without brain stimulation — yielded stimulus-
specific learning. Importantly, reactivation-coupled brain stimulation achieved generalization
with an 80% reduction in training trials while maintaining learning gains comparable to full-
practice. These findings demonstrate that reactivation and neuromodulation interact to unlock
learning generalization, revealing a key brain plasticity mechanism and offering a rapid,

translatable strategy for sensory rehabilitation.

Keywords: learning generalization | brain stimulation | memory reactivation | perceptual
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Introduction

Extensive practice over days to months can yield highly specialized skills, but the hallmark of
learning is generalization — an ability to transfer acquired skills flexibly to new contexts
(Shepard, 1987). Previous research has manipulated behavioral protocols to identify factors
that shape the degree of specificity and transfer, including task difficulty (Ahissar and
Hochstein, 1997; Jeter et al., 2009), training duration (Jeter et al., 2010), stimulus (Yashar and
Denison, 2017) and task variability (Manenti et al., 2023; Xiao et al., 2008). These strategies
can promote generalization, but often entail trade-offs: protocols that are simpler or shorter
tend to yield smaller learning gains, whereas those incorporating stimulus or task variability
often require training durations comparable to or exceeding that of conventional full-practice
regimens. Moreover, although such behavioral manipulations reveal empirical benefits, they
provide limited insight into the underlying neural mechanisms, leaving a critical gap in our
understanding of how brain plasticity supports the generalization of learning.

To address this gap, we focus on visual perceptual learning (VPL), a well-established
model of experience-dependent improvements in perceptual decisions (Watanabe and Sasaki,
2015). A hallmark of VVPL is its high degree of stimulus specificity, a phenomenon thought to
reflect over-specialized neural representations in the visual cortex (i.e., perceptual overfitting)
(Sagi, 2011). This overfitting may arise due to learning either modifying feature representation
in early visual cortex (Jia et al., 2020, 2024; Yan et al., 2014) or enhancing read-out of sensory
neurons from early visual areas to optimize perceptual decisions (Dosher and Lu, 2017; Law
and Gold, 2008), with greater specificity emerging as training progresses. This creates a central
paradox in which extensive training is required to achieve substantial learning gains, yet such
training simultaneously drives overfitting that limits the generalizability of learning.

While improvements in conventional VPL primarily depend on prolonged online practice,

recent studies propose an alternative mechanism based on offline memory consolidation, which
3
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may help resolve this paradox. Specifically, reactivation-based protocol uses brief reminder
trials to retrieve existing perceptual memories and enables learning via offline consolidation
processes. Although behavioral improvements — both in overall learning gains and in
specificity — are comparable between full-practice and reactivation-based VPL, evidence
indicates that the latter engages distinct brain plasticity processes. Specifically, these learning
gains are thought to arise from offline stabilization mediated by y-aminobutyric acid (GABA)
(Eisenstein et al., 2023), the brain's primary inhibitory neurotransmitter. Anodal transcranial
direct current stimulation (tDCS), a non-invasive brain stimulation technique, has been shown
to reduce GABA concentrations in the visual cortex (Barron et al., 2016). Therefore, we
hypothesize that applying anodal tDCS to the visual cortex may disrupt perceptual overfitting
in reactivation-based VPL, thereby enhancing the generalization of learned perceptual skills.
To test this hypothesis, we trained separate groups of participants on visual detection tasks
using either reactivation-based or full-practice protocols, combined with anodal or sham tDCS
over the visual cortex. Only combination of reactivation-based learning and anodal tDCS
produced complete transfer of learning from trained to untrained stimuli, an effect consistently
replicated across stimulus features (orientation, motion direction). In contrast, reactivation
alone or full-practice protocols resulted in stimulus-specific learning. These findings reveal a
key brain plasticity mechanism enabling generalization and suggesting a rapid, transferable

training strategy with direct relevance for clinical rehabilitation (e.g. sensory deficits).

Results

We trained forty-eight adults with a reactivation-based learning protocol (Bang et al., 2018),
using an orientation detection task (Figure 1A-B). On each trial, participants viewed two
sequentially presented stimuli and reported which interval contained the target (a Gabor patch

embedded in noise). Participants were randomly assigned to either the Anodal or Sham group
4



93 (N =24 pergroup). The anodal electrode was placed over O1 (contralateral to the trained visual
94  field) and the cathodal electrode over Cz (vertex), following the international 10-20 EEG
95  system.
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96  Figure 1. Procedures and transfer effect using orientation task.

97  (A) Experimental design. Participants completed five sessions, including a pretest, training or

98 reactivation, and a posttest. (B) Orientation detection task. Participants reported which of the two

99  intervals contained the Gabor orientation. (C) Normalized learning gain index (NGI) for trained versus
100  untrained orientations in the Reactivation (Anodal vs. Sham) groups. (D) Thresholds (S/N ratio) in
101  Reactivation/Anodal group. A two-way repeated measures ANOVA (session: pretest vs. posttest x
102  orientation: trained vs. untrained) revealed a significant main effect of session (F(1,23) = 124.406, p <

103 0.001, n?, = 0.844), but no interaction effect (F(1,23) = 0.010, p = 0.923, BFy = 3.633), demonstrating
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comparable learning for the trained (paired t-test: t(23) = 7.338, p < 0.001, Cohen’s d = 1.498) and
untrained (paired t-test: t(23) = 7.765, p < 0.001, Cohen’s d = 1.585) orientations. (E) Thresholds (S/N
ratio) in Reactivation/Sham group. A two-way repeated measures ANOVA (session: pretest vs. posttest
x orientation: trained vs. untrained) revealed a significant interaction (F(1,23) = 16.477, p <0.001, n?%,
=0.417), demonstrating stronger learning for the trained (paired t-test: t(23) = 8.386, p <0.001, Cohen’s
d = 1.712) compared to the untrained (paired t-test: t(23) = 2.599, p = 0.016, Cohen’s d = 0.531)
orientation. The central lines in the box plot indicate the median values. The upper and lower lines
represent the interquartile range (25" — 75™ percentiles). Each dot represents data from one participant.
*p <0.05, ¥**p <0.001, n.s. = not significant.

Our results showed complete transfer of learning in the Reactivation/Anodal group. In
contrast, we observed orientation-specific learning in the Reactivation/Sham group (Figure 1C),
consistent with previous studies (Amar-Halpert et al., 2017). To quantify the learning effects,
we calculated a normalized learning gain index (NGI = [(Pre-test threshold — Post-test threshold)
| ((Pre-test threshold + Post-test threshold) / 2)] < 100 %). A two-way mixed ANOVA
(stimulation condition: anodal vs. sham > orientation: trained vs. untrained) on NGI revealed
a significant interaction (F(1,46) = 5.551, p = 0.023, #% = 0.108). Post-hoc comparisons
showed significantly greater improvements for the trained over untrained orientation in the
Reactivation/Sham group (paired t-test: t(23) = 4.484, p < 0.001, Cohen’s d = 0.915), but
comparable improvements across orientations in the Reactivation/Anodal group (paired t-test:
t(23) = 0.213, p = 0.833, BFo1 = 4.563). Similar results were obtained when analyzing
thresholds (i.e., S/N ratio, Figure 1D-E). These findings indicate that reactivation-coupled
occipital stimulation promotes full transfer of learning.

To validate that the observed generalization was not specific to the orientation detection
task, we conducted a follow-up experiment using motion detection (N = 48, Figure 2A), while

keeping the task structure and stimulation protocols similar. A two-way mixed ANOVA

(stimulation condition: anodal vs. sham >direction: trained vs. untrained) on NGI revealed a



131

132

133

134

135

136

137

138

139
140
141
142
143
144
145
146

significant interaction (F(1,46) = 13.107, p < 0.001, 5% = 0.222, Figure 2B). Post-hoc
comparisons indicated that the Reactivation/Sham group exhibited significantly greater
learning for the trained than untrained direction (paired t-test: t(23) = 4.285, p < 0.001, Cohen’s
d = 0.875), whereas the Reactivation/Anodal group showed equivalent improvements across
directions (paired t-test: t(23) = 0.117, p = 0.908, BFo1 = 4.630). Similar results were obtained
when analyzing motion coherence (Figure 2C-D). This replication with a different stimulus
feature corrraborates our results showing that reactivation-coupled anodal stimulation enables

complete transfer of perceptual learning.
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Figure 2. Transfer effect using motion detection task.

(A) Motion detection task. Participants reported which of the two intervals contained the coherent
motion dot field. (B) Normalized learning gain index (NGI) for the trained versus untrained direction
in the Reactivation (Anodal vs. Sham) groups. (C) Thresholds (motion coherence) in
Reactivation/Anodal group. A two-way repeated measures ANOVA (session: pretest vs. posttest x
direction: trained vs. untrained) revealed a significant main effect of session (F(1,23) = 102.652, p <
0.001, n* = 0.817), but no interaction effect (F(1,23) = 0.252, p = 0.621, BF¢; = 3.239), demonstrating

comparable learning for the trained (paired t-test: t(23) = 9.134, p < 0.001, Cohen’s d = 1.864) and
7
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untrained (paired t-test: t(23) = 8.973, p <0.001, Cohen’s d = 1.832) directions. (D) Thresholds (motion
coherence) in Reactivation/Sham group. A two-way repeated measures ANOVA (session: pretest vs.
posttest x orientation: trained vs. untrained) revealed a significant interaction (F(1,23) = 9.864, p =
0.005, n%, = 0.300), demonstrating larger learning effect for the trained (paired t-test: t(23) = 7.764, p <
0.001, Cohen’s d = 1.585) compared to the untrained (paired t-test: t(23) = 3.244, p = 0.004, Cohen’s d
= (0.662) direction. The central lines in the box plot indicate the median values. The upper and lower
lines represent the interquartile range (25" — 75" percentiles). Each dot represents data from one
participant. **p < 0.01, ***p < 0.001, n.s. = not significant.

We next asked whether the observed generalization in Reactivation/Anodal group might
reflect a reduced overall amount of learning. To test this possibility, we recruited an additional
group of 24 adults who completed standard full-practice with sham stimulation on the
orientation detection task (Figure 1A). A one-way ANOVA on NGI for the trained orientation
(group: Reactivation/Anodal vs. Reactivation/Sham vs. Full-Practice/Sham) revealed no
significant main effect of group (F(2,69) = 0.085, p = 0.919), which was further supported by
a Bayesian analysis (BFo1 = 7.952; see Materials and Methods). Direct comparison confirmed
that the Reactivation/Anodal group attained learning gains comparable to those of the Full-
Practice/Sham group (independent t-test: t(46) = 0.095, p = 0.925, BFo1 = 3.467). These results
suggest that the reactivation-coupled brain stimulation enhanced generalization without
compromising overall learning gains.

Next, we examined whether the observed generalization in Reactivation/Anodal group
could be attributed to reduced learning specificity inherent to the reactivation-based training
protocol itself. To address this, we conducted a two-way mixed ANOVA (group:
Reactivation/Sham vs. Full-practice/Sham > orientation: trained vs. untrained) on NGI. The
analysis revealed a robust main effect of orientation (F(1,46) = 21.870, p < 0.001, 5% = 0.322),
but no significant effects of training protocol (F(1,46) = 0.029, p = 0.866, BFo1 = 3.486) or their

interaction (F(1,46) = 0.882, p = 0.352, BFo1 = 2.302). These results indicate that both the

8
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Reactivation/Sham and Full-Practice/Sham groups showed a comparable degree of learning
specificity. Taken together with the performance in Reactivation/Anodal group, these findings
demonstrate that anodal tDCS is necessary for achieving enhanced generalization in
reactivation-based VPL.

Further, anodal tDCS combined with full-practice failed to enhance generalization;
instead, it increased learning specificity. We recruited another 24 adults and applied anodal
tDCS in combination with full-practice. A two-way mixed ANOVA (group: Full-
Practice/Anodal vs. Full-Practice/Sham > orientation: trained vs. untrained) on NGI revealed
a significant interaction (F(1,46) = 4.237, p = 0.045, 5%, = 0.084, Figure 3), indicating enhanced
specificity in the Full-Practice/Anodal group (i.e., larger improvements for the trained than
untrained orientation). Post-hoc comparisons showed that this increased specificity was driven
by greater gains for the trained orientation with anodal than sham tDCS (independent t-test:
t(46) = 2.489, p = 0.017, Cohen’s d = 0.718), but no difference for the untrained orientation
(independent t-test: t(46) = -0.246, p = 0.807, BFo1 = 3.395). These results indicate that anodal
tDCS combined with full-practice increased learning specificity, rather than enhancing

generalization.
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Figure 3. Full-Practice leads to learning specificity.

(A) Normalized learning gain index (NGI) for the trained versus untrained orientation in the Full-
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Practice (Anodal vs. Sham) groups. (B) Thresholds (S/N ratio) in Full-Practice/Anodal group. A two-
way repeated measures ANOVA (session: pretest vs. posttest x orientation: trained vs. untrained)
revealed a significant interaction (F(1,23) = 17.961, p < 0.001, n, = 0.438), demonstrating larger
learning effect for the trained (paired t-test: t(23) = 10.689, p < 0.001, Cohen’s d = 2.182) compared to
the untrained (paired t-test: t(23) = 2.782, p = 0.011, Cohen’s d = 0.568) orientation. (C) Thresholds
(S/N ratio) in Full-Practice/Sham group. A two-way repeated measures ANOVA (session: pretest vs.
posttest x orientation: trained vs. untrained) revealed a significant interaction (F(1,23) = 5.380, p =
0.030, n%, = 0.190), demonstrating larger learning effect for the trained (paired t-test: t(23) = 6.932, p <
0.001, Cohen’s d = 1.415) compared to the untrained (paired t-test: t(23) =4.101, p <0.001, Cohen’s d
= (0.837) orientation. The central lines in the box plot indicate the median values. The upper and lower
lines represent the interquartile range (25th — 75th percentiles). Each dot represents data from one
participant. *p < 0.05, ***p < 0.001, n.s. = not significant.

Lastly, to statistically validate the enhanced generalization in the Reactivation/Anodal
group compared with other groups, we calculated the NGI difference between the trained and
untrained orientation (NGI difference = NGliraineds — NGluntrained), Where lower values indicate
greater transfer and higher values indicate greater specificity. A two-way independent-
measures ANOVA (training protocol: reactivation vs. full-practice > stimulation condition:
anodal vs. sham) on NGI difference showed a significant interaction (F(1,92) = 9.755, p =
0.002, #% = 0.096). This pattern showed that Reactivation/Anodal enhanced generalization,
whereas Full-Practice/Anodal increased specificity. The divergence across protocols suggests

distinct neural mechanisms for reactivation-based versus repetition-based learning, consistent

with previous studies (Eisenstein et al., 2023; Kondat et al., 2024).

Discussion
Our study provides the first evidence that reactivation and neuromodulation interact to unlock
complete learning generalization. Reactivation-based protocols have been shown to result

mainly in learning specificity (Amar-Halpert et al., 2017), with a recent report suggesting

10



220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

partial transfer (Kondat et al., 2025), consistent with the effects observed for the sham condition
in our study. In contrast, we demonstrate that reactivation-coupled anodal tDCS
enables complete learning transfer. We have replicated this result across two perceptual
detection tasks with different stimulus features (orientation, motion direction), providing
evidence for a perceptual plasticity mechanism that boosts generalization. In particular, our
protocol may disrupt the offline consolidation of learning in visual cortex — likely due to tDCS-
mediated GABA reduction — thereby reducing perceptual overfitting and promoting
generalization. This reduction in overfitting does not compromise learning gains, in line with
previous work suggesting that reactivation-based plasticity involves higher-order areas
(Kondat et al., 2024).

Previous studies on repetition-based learning have shown that different forms of electrical
stimulation can modulate learning outcomes in distinct ways. For instance, anodal or cathodal
stimulation alters VPL in a task-specific manner (Frangou et al., 2018), while stimulation at
alpha — but not theta or gamma — frequencies can enhance VPL improvements (He et al., 2022).
Consistent with these findings, the present study further demonstrated that anodal tDCS
selectively enhanced stimulus-specific learning. This pattern of results, that is distinct from that
observed in the reactivation groups, may be explained by two factors. First, prior research
suggests that excessive training in full-practice group can induce hyper-stabilization of memory
traces in the visual cortex (Shibata et al., 2017), a process that may rely less on offline
consolidation. As a result, the GABA reduction induced by anodal tDCS exterted a diminished
impact on consolidation-related processes. Second, anodal tDCS may increase the excitatory-
inhibitory (E-1) ratio (Barron et al., 2016) during training sessions, thereby promoting a more
plastic state in the visual cortex (Bang et al., 2018; Shibata et al., 2017) and enhancing stimulus-
specific learning gains in VPL following full practice. Future work is needed, integrating

multimodal neuroimaging (e.g., fMRI-MRS fusion) to directly investigate functional
11
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reorganization and neurochemical plasticity in reactivation- versus repetition-based learning
(Jiaetal., 2023, 2024).

In sum, we propose reactivation-coupled brain stimulation as a combined intervention
protocol for enhanced learning generalization at short training duration (i.e., reducing trial
numbers by 80%), while maintaining learning gains. As memory reactivation mechanisms
drive brain plasticity across multiple domains — including visual, motor, and mathematical
learning — our reactivation-coupled anodal tDCS protocol may offer a translatable solution for
clinical rehabilitation, enabling more efficient training with better generalization extending

beyond the specific training conditions.

Materials and Methods

Participants

Night-six participants took part in the reactivation-based VPL experiment. Half completed an
orientation detection task (main experiment; 21.71 +3.25 years old, 27 females) and half a
motion detection task (control experiment; 21.38 *+2.14 years old, 28 females). Within each
task, participants were randomly assigned to the Reactivation/Anodal or the Reactivation/Sham
group (N = 24 for each group). Based on a previous perceptual learning study using similar
stimulation method (He et al., 2022), we conducted a prior independent t-test using the reported
effect size (Cohen’s d = 0.9) in G*Power (Version 3.1) (Faul et al., 2007). This analysis
indicated that 24 participants per group would provide power greater than 85% to detect the
tDCS effect. Note that, this sample size was also comparable to prior tDCS studies on
perceptual learning (Frangou et al., 2018; He et al., 2022; Jia et al., 2022). In addition, we
recruited another forty-eight participants (22.00 +2.30 years old, 26 females) in the repetition-
based VPL experiment, and randomly assigned them to the Full-Practice/Anodal or the Full-

Practice/Sham group (N = 24 for each group). All participants were na'we to the purpose of the
12
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study, had normal or corrected-to-normal vision, and reported being right-handed. Written
consent was obtained from all participants. The procedures used in this study were approved
by the Ethics Committee at Department of Psychology and Behavioral Sciences, Zhejiang

University (protocol number: 2022-061).

Stimuli and apparatus

Gabor patches (Gaussian windowed sinusoidal gratings) were presented in the lower-right
visual field at an eccentricity of 6.5<against a uniform gray background (~35 cd/m?). The
Gabor stimuli had a diameter of 5< random phase and spatial frequency of 1 cycle/degree. The
Gaussian envelope had standard deviation of 2.5< Noise patterns from sinusoidal luminance
distributions were generated and superimposed on the Gabor patches at a specific signal-to-
noise (S/N) ratio. For instance, a 20% S/N ratio indicates that the noise pattern replaced 80%
of the pixels of the Gabor patch.

Random dot kinematograms (RDKSs) were presented in an annular aperture located in the
right visual field at 8 “eccentricity. Each display contained 400 dots (0.1 <diameter) moving at
a speed of 107s. A specific proportion of dots moved coherently in one direction, while the
rest moved randomly. When a dot moved out of the aperture, it was wrapped around to reappear
from the opposite side along its motion direction.

The stimuli were generated using Psychtoolbox 3.0 (Brainard, 1997; Pelli, 1997)
implemented in MATLAB (The MATHWORKS Inc., Natick, MA, USA). Stimuli were
presented on a Dell Cathode-Ray Tube (CRT) monitor with the size of 40 <30 cm?, resolution
of 1024 %768 and a refresh rate of 60 Hz. Gamma correction was applied to the monitor. A
chin-rest was used to stabilize participants’ head position and maintain the viewing distance at

72 cm.
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Experimental design and statistical analysis

Participants trained with the reactivation-based protocol completed five sessions in the
following order: a pretest, an encoding session, two reactivation sessions, and a posttest. For
participants trained with repetition-based protocol, the encoding and reactivation sessions were
replaced with three standard full-practice training sessions (Figure 1A). All participants
performed two-interval forced-choice orientation detection tasks throughout these sessions.

Orientation detection task. As shown in Figure 1B, each trial began with a central fixation
cross (400 ms), followed by two sequential stimulus displays (50 ms each) separated by a 300
ms blank interval. One display contained a Gabor patch with specific S/N ratio, while the other
contained pure noise (0% S/N ratio), with presentation order randomized across trials.
Participants indicated which interval contained the Gabor patch via a keyboard press.

Participant’s performance in the task was measured using a 2-down 1-up staircase with
10 reversals converging at 70.7% performance. In each staircase run, the S/N started with 15%
and adaptively changed with a step size of 0.05 log units. Each staircase run consisted of around
40 trials (1 — 2 mins). We calculated the thresholds as the geometric mean of the last six
reversals. The reference orientation was set at 55<for the trained stimulus and 125<for the
untrained stimuli, with these assignments counterbalanced across participants.

Behavioral test session. To stabilize fixation and familiarize participants with the task
before tests, they first completed a 30-trial practice run (20% S/N ratio, above threshold).
During practice run, auditory feedback was provided for incorrect responses. In both pretest
and posttest, they completed four staircase runs of the orientation detection task (two runs per
condition in random order). Detection thresholds were calculated by averaging the thresholds
from the two runs per condition. No feedback was provided during tests.

Training session: Reactivation or Full-Practice. All participants were trained on an

orientation detection task with fixed orientation and location throughout training sessions.
14
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Auditory feedback was provided for incorrect trials. The Full-Practice group (i.e., repetition-
based VPL) completed three training sessions (16 staircase runs per session), while the
Reactivation group performed 16 staircases runs on the encoding session, followed by two
reactivation sessions, each consisting of three staircase runs. This design followed the protocol
of a prior study (Bang et al., 2018), while also matched the duration of the online stimulation
protocol (see tDCS section for details).

Behavioral data analysis. For each group and each orientation, we calculated a normalized
learning gain index (NGI = [(Pre-test threshold — Post-test threshold) / ((Pre-test threshold +
Post-test threshold) / 2)] <100 %). Paired t-tests on NGI were used to compare performance
between trained and untrained orientations within participants. To examine differences across
multiple groups, we applied either independent t-tests or mixed ANOVASs on NGI. To quantify
the amount of transfer effects, we calculated the NGI difference between the trained and
untrained orientation (NGI difference = NGlirained — NGluntrained). LOWer NGI difference reflects
more transfer, while higher NGI difference reflects greater specificity. A two-way independent-
measures ANOVA (training protocol > stimulation condition) was applied on the NGI
difference. To evaluate the strength of evidence for the lack of significant effects, we conducted
parallel Bayesian analyses (Wagenmakers, 2007) using standard priors as implemented in
JASP Version 0.17.1.0 (JASP Team, 2023).

Control experiment: motion detection task. To examine the robustness of the generalizable
learning effect induced by reactivation-coupled brain stimulation, we replicated the
reactivation-based experiment with motion stimuli (RDKSs). The behavioral task procedure was
similar to those used in the orientation detection task, with either anodal or sham stimulation.
On each trial, two sequential displays were presented: one contained a signal RDKs with a
given motion coherence, and the other was a noise field with 0% coherence (Figure 2A). The

reference direction was set at 60 <for the trained stimulus and 300<for the untrained stimuli,
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with these assignments counterbalanced across participants. Within each staircase run, the
initial motion coherence was set to 15% and was adjusted adaptively using a step size of 0.05
log units.

Transcranial direct current stimulation (tDCS). tDCS was delivered using a battery-
driven, constant current stimulator with a pair of rubber electrodes in a5 <7 cm? saline-soaked
synthetic sponges. In the main experiments of orientation detection task , the anode electrode
was placed over the visual cortex (O1, 10-20 system) with conductive cream, while in the
control experiment of motion detection task, the anode electrode was placed approximately 3
cm above the mastoid—inion line and 5 cm left of the midline in the sagittal plane (left V5,
Battaglini et al., 2017). The cathode electrodes was positioned at the vertex (Cz) across
experiments. Stimulation parameters followed safety guidelines. For the anodal tDCS
condition, a direct current with an intensity of 1.5 mA was applied for 20 minutes, with a 30 s
fade in/out periods to minimize cutaneous sensations. We used online stimulation protocol (i.e.,
stimulation during training). In particular, the current flow was initiated 10 minutes before task
onset (rest period) and 10 minutes during the task. For the sham condition, participants received
a 30 s fade-in phase followed by a 30 s fade-out at the beginning and end of the stimulation
run, with no active stimulation in between. This sham protocol has been reported to effectively

keep participants blinded to the stimulation conditions (Gandiga et al., 2006).
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