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Abstract 22 

Generalization of learned knowledge to new contexts is essential for adaptive behavior. Despite 23 

extensive research on the brain plasticity mechanisms underlying learning specificity, the 24 

mechanisms that facilitate generalization remain poorly understood. Here, we investigate 25 

whether using brain stimulation to disrupt offline consolidation in visual cortex promotes 26 

learning generalization. Separate groups of participants (N = 144) were trained on visual 27 

detection tasks using either a reactivation-based protocol or conventional full-practice, 28 

combined with anodal or sham transcranial direct current stimulation (tDCS) over the visual 29 

cortex. Strikingly, only combination of reactivation-based learning with anodal tDCS produced 30 

complete generalization from trained to untrained stimuli, an effect consistently replicated 31 

across features (orientation, motion direction). In contrast, reactivation-based learning alone 32 

and conventional full-practice – whether with or without brain stimulation – yielded stimulus-33 

specific learning. Importantly, reactivation-coupled brain stimulation achieved generalization 34 

with an 80% reduction in training trials while maintaining learning gains comparable to full-35 

practice. These findings demonstrate that reactivation and neuromodulation interact to unlock 36 

learning generalization, revealing a key brain plasticity mechanism and offering a rapid, 37 

translatable strategy for sensory rehabilitation. 38 

 39 

Keywords: learning generalization | brain stimulation | memory reactivation | perceptual 40 

learning 41 
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Introduction 43 

Extensive practice over days to months can yield highly specialized skills, but the hallmark of 44 

learning is generalization – an ability to transfer acquired skills flexibly to new contexts 45 

(Shepard, 1987). Previous research has manipulated behavioral protocols to identify factors 46 

that shape the degree of specificity and transfer, including task difficulty (Ahissar and 47 

Hochstein, 1997; Jeter et al., 2009), training duration (Jeter et al., 2010), stimulus (Yashar and 48 

Denison, 2017) and task variability (Manenti et al., 2023; Xiao et al., 2008). These strategies 49 

can promote generalization, but often entail trade-offs: protocols that are simpler or shorter 50 

tend to yield smaller learning gains, whereas those incorporating stimulus or task variability 51 

often require training durations comparable to or exceeding that of conventional full-practice 52 

regimens. Moreover, although such behavioral manipulations reveal empirical benefits, they 53 

provide limited insight into the underlying neural mechanisms, leaving a critical gap in our 54 

understanding of how brain plasticity supports the generalization of learning. 55 

To address this gap, we focus on visual perceptual learning (VPL), a well-established 56 

model of experience-dependent improvements in perceptual decisions (Watanabe and Sasaki, 57 

2015). A hallmark of VPL is its high degree of stimulus specificity, a phenomenon thought to 58 

reflect over-specialized neural representations in the visual cortex (i.e., perceptual overfitting) 59 

(Sagi, 2011). This overfitting may arise due to learning either modifying feature representation 60 

in early visual cortex (Jia et al., 2020, 2024; Yan et al., 2014) or enhancing read-out of sensory 61 

neurons from early visual areas to optimize perceptual decisions (Dosher and Lu, 2017; Law 62 

and Gold, 2008), with greater specificity emerging as training progresses. This creates a central 63 

paradox in which extensive training is required to achieve substantial learning gains, yet such 64 

training simultaneously drives overfitting that limits the generalizability of learning. 65 

While improvements in conventional VPL primarily depend on prolonged online practice, 66 

recent studies propose an alternative mechanism based on offline memory consolidation, which 67 
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may help resolve this paradox. Specifically, reactivation-based protocol uses brief reminder 68 

trials to retrieve existing perceptual memories and enables learning via offline consolidation 69 

processes. Although behavioral improvements – both in overall learning gains and in 70 

specificity – are comparable between full-practice and reactivation-based VPL, evidence 71 

indicates that the latter engages distinct brain plasticity processes. Specifically, these learning 72 

gains are thought to arise from offline stabilization mediated by γ-aminobutyric acid (GABA) 73 

(Eisenstein et al., 2023), the brain's primary inhibitory neurotransmitter. Anodal transcranial 74 

direct current stimulation (tDCS), a non-invasive brain stimulation technique, has been shown 75 

to reduce GABA concentrations in the visual cortex (Barron et al., 2016). Therefore, we 76 

hypothesize that applying anodal tDCS to the visual cortex may disrupt perceptual overfitting 77 

in reactivation-based VPL, thereby enhancing the generalization of learned perceptual skills. 78 

To test this hypothesis, we trained separate groups of participants on visual detection tasks 79 

using either reactivation-based or full-practice protocols, combined with anodal or sham tDCS 80 

over the visual cortex. Only combination of reactivation-based learning and anodal tDCS 81 

produced complete transfer of learning from trained to untrained stimuli, an effect consistently 82 

replicated across stimulus features (orientation, motion direction). In contrast, reactivation 83 

alone or full-practice protocols resulted in stimulus-specific learning. These findings reveal a 84 

key brain plasticity mechanism enabling generalization and suggesting a rapid, transferable 85 

training strategy with direct relevance for clinical rehabilitation (e.g. sensory deficits). 86 

 87 

Results 88 

We trained forty-eight adults with a reactivation-based learning protocol (Bang et al., 2018), 89 

using an orientation detection task (Figure 1A-B). On each trial, participants viewed two 90 

sequentially presented stimuli and reported which interval contained the target (a Gabor patch 91 

embedded in noise). Participants were randomly assigned to either the Anodal or Sham group 92 
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(N = 24 per group). The anodal electrode was placed over O1 (contralateral to the trained visual 93 

field) and the cathodal electrode over Cz (vertex), following the international 10-20 EEG 94 

system. 95 

Figure 1. Procedures and transfer effect using orientation task. 96 

(A) Experimental design. Participants completed five sessions, including a pretest, training or 97 

reactivation, and a posttest. (B) Orientation detection task. Participants reported which of the two 98 

intervals contained the Gabor orientation. (C) Normalized learning gain index (NGI) for trained versus 99 

untrained orientations in the Reactivation (Anodal vs. Sham) groups. (D) Thresholds (S/N ratio) in 100 

Reactivation/Anodal group. A two-way repeated measures ANOVA (session: pretest vs. posttest × 101 

orientation: trained vs. untrained) revealed a significant main effect of session (F(1,23) = 124.406, p < 102 

0.001, η2
p = 0.844), but no interaction effect (F(1,23) = 0.010, p = 0.923, BF01 = 3.633), demonstrating 103 
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comparable learning for the trained (paired t-test: t(23) = 7.338, p < 0.001, Cohen’s d = 1.498) and 104 

untrained (paired t-test: t(23) = 7.765, p < 0.001, Cohen’s d = 1.585) orientations. (E) Thresholds (S/N 105 

ratio) in Reactivation/Sham group. A two-way repeated measures ANOVA (session: pretest vs. posttest 106 

× orientation: trained vs. untrained) revealed a significant interaction (F(1,23) = 16.477, p < 0.001, η2
p 107 

= 0.417), demonstrating stronger learning for the trained (paired t-test: t(23) = 8.386, p < 0.001, Cohen’s 108 

d = 1.712) compared to the untrained (paired t-test: t(23) = 2.599, p = 0.016, Cohen’s d = 0.531) 109 

orientation. The central lines in the box plot indicate the median values. The upper and lower lines 110 

represent the interquartile range (25th – 75th percentiles). Each dot represents data from one participant. 111 

*p < 0.05, ***p < 0.001, n.s. = not significant. 112 

 113 

Our results showed complete transfer of learning in the Reactivation/Anodal group. In 114 

contrast, we observed orientation-specific learning in the Reactivation/Sham group (Figure 1C), 115 

consistent with previous studies (Amar-Halpert et al., 2017). To quantify the learning effects, 116 

we calculated a normalized learning gain index (NGI = [(Pre-test threshold – Post-test threshold) 117 

/ ((Pre-test threshold + Post-test threshold) / 2)] × 100 %). A two-way mixed ANOVA 118 

(stimulation condition: anodal vs. sham × orientation: trained vs. untrained) on NGI revealed 119 

a significant interaction (F(1,46) = 5.551, p = 0.023, η2
p = 0.108). Post-hoc comparisons 120 

showed significantly greater improvements for the trained over untrained orientation in the 121 

Reactivation/Sham group (paired t-test: t(23) = 4.484, p < 0.001, Cohen’s d = 0.915), but 122 

comparable improvements across orientations in the Reactivation/Anodal group (paired t-test: 123 

t(23) = 0.213, p = 0.833, BF01 = 4.563). Similar results were obtained when analyzing 124 

thresholds (i.e., S/N ratio, Figure 1D-E). These findings indicate that reactivation-coupled 125 

occipital stimulation promotes full transfer of learning.  126 

To validate that the observed generalization was not specific to the orientation detection 127 

task, we conducted a follow-up experiment using motion detection (N = 48, Figure 2A), while 128 

keeping the task structure and stimulation protocols similar. A two-way mixed ANOVA 129 

(stimulation condition: anodal vs. sham × direction: trained vs. untrained) on NGI revealed a 130 
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significant interaction (F(1,46) = 13.107, p < 0.001, η2
p = 0.222, Figure 2B). Post-hoc 131 

comparisons indicated that the Reactivation/Sham group exhibited significantly greater 132 

learning for the trained than untrained direction (paired t-test: t(23) = 4.285, p < 0.001, Cohen’s 133 

d = 0.875), whereas the Reactivation/Anodal group showed equivalent improvements across 134 

directions (paired t-test: t(23) = 0.117, p = 0.908, BF01 = 4.630). Similar results were obtained 135 

when analyzing motion coherence (Figure 2C-D). This replication with a different stimulus 136 

feature corrraborates our results showing that reactivation-coupled anodal stimulation enables 137 

complete transfer of perceptual learning. 138 

Figure 2. Transfer effect using motion detection task. 139 

(A) Motion detection task. Participants reported which of the two intervals contained the coherent 140 

motion dot field. (B) Normalized learning gain index (NGI) for the trained versus untrained direction 141 

in the Reactivation (Anodal vs. Sham) groups. (C) Thresholds (motion coherence) in 142 

Reactivation/Anodal group. A two-way repeated measures ANOVA (session: pretest vs. posttest × 143 

direction: trained vs. untrained) revealed a significant main effect of session (F(1,23) = 102.652, p < 144 

0.001, η2
p = 0.817), but no interaction effect (F(1,23) = 0.252, p = 0.621, BF01 = 3.239), demonstrating 145 

comparable learning for the trained (paired t-test: t(23) = 9.134, p < 0.001, Cohen’s d = 1.864) and 146 



8 

 

untrained (paired t-test: t(23) = 8.973, p < 0.001, Cohen’s d = 1.832) directions. (D) Thresholds (motion 147 

coherence) in Reactivation/Sham group. A two-way repeated measures ANOVA (session: pretest vs. 148 

posttest × orientation: trained vs. untrained) revealed a significant interaction (F(1,23) = 9.864, p = 149 

0.005, η2
p = 0.300), demonstrating larger learning effect for the trained (paired t-test: t(23) = 7.764, p < 150 

0.001, Cohen’s d = 1.585) compared to the untrained (paired t-test: t(23) = 3.244, p = 0.004, Cohen’s d 151 

= 0.662) direction. The central lines in the box plot indicate the median values. The upper and lower 152 

lines represent the interquartile range (25th – 75th percentiles). Each dot represents data from one 153 

participant. **p < 0.01, ***p < 0.001, n.s. = not significant. 154 

 155 

We next asked whether the observed generalization in Reactivation/Anodal group might 156 

reflect a reduced overall amount of learning. To test this possibility, we recruited an additional 157 

group of 24 adults who completed standard full-practice with sham stimulation on the 158 

orientation detection task (Figure 1A). A one-way ANOVA on NGI for the trained orientation 159 

(group: Reactivation/Anodal vs. Reactivation/Sham vs. Full-Practice/Sham) revealed no 160 

significant main effect of group (F(2,69) = 0.085, p = 0.919), which was further supported by 161 

a Bayesian analysis (BF01 = 7.952; see Materials and Methods). Direct comparison confirmed 162 

that the Reactivation/Anodal group attained learning gains comparable to those of the Full-163 

Practice/Sham group (independent t-test: t(46) = 0.095, p = 0.925, BF01 = 3.467). These results 164 

suggest that the reactivation-coupled brain stimulation enhanced generalization without 165 

compromising overall learning gains. 166 

Next, we examined whether the observed generalization in Reactivation/Anodal group 167 

could be attributed to reduced learning specificity inherent to the reactivation-based training 168 

protocol itself. To address this, we conducted a two-way mixed ANOVA (group: 169 

Reactivation/Sham vs. Full-practice/Sham × orientation: trained vs. untrained) on NGI. The 170 

analysis revealed a robust main effect of orientation (F(1,46) = 21.870, p < 0.001, η2
p = 0.322), 171 

but no significant effects of training protocol (F(1,46) = 0.029, p = 0.866, BF01 = 3.486) or their 172 

interaction (F(1,46) = 0.882, p = 0.352, BF01 = 2.302). These results indicate that both the 173 
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Reactivation/Sham and Full-Practice/Sham groups showed a comparable degree of learning 174 

specificity. Taken together with the performance in Reactivation/Anodal group, these findings 175 

demonstrate that anodal tDCS is necessary for achieving enhanced generalization in 176 

reactivation-based VPL. 177 

Further, anodal tDCS combined with full-practice failed to enhance generalization; 178 

instead, it increased learning specificity. We recruited another 24 adults and applied anodal 179 

tDCS in combination with full-practice. A two-way mixed ANOVA (group: Full-180 

Practice/Anodal vs. Full-Practice/Sham × orientation: trained vs. untrained) on NGI revealed 181 

a significant interaction (F(1,46) = 4.237, p = 0.045, η2
p = 0.084, Figure 3), indicating enhanced 182 

specificity in the Full-Practice/Anodal group (i.e., larger improvements for the trained than 183 

untrained orientation). Post-hoc comparisons showed that this increased specificity was driven 184 

by greater gains for the trained orientation with anodal than sham tDCS (independent t-test: 185 

t(46) = 2.489, p = 0.017, Cohen’s d = 0.718), but no difference for the untrained orientation 186 

(independent t-test: t(46) = -0.246, p = 0.807, BF01 = 3.395). These results indicate that anodal 187 

tDCS combined with full-practice increased learning specificity, rather than enhancing 188 

generalization.  189 

Figure 3. Full-Practice leads to learning specificity. 190 

(A) Normalized learning gain index (NGI) for the trained versus untrained orientation in the Full-191 



10 

 

Practice (Anodal vs. Sham) groups. (B) Thresholds (S/N ratio) in Full-Practice/Anodal group. A two-192 

way repeated measures ANOVA (session: pretest vs. posttest × orientation: trained vs. untrained) 193 

revealed a significant interaction (F(1,23) = 17.961, p < 0.001, η2
p = 0.438), demonstrating larger 194 

learning effect for the trained (paired t-test: t(23) = 10.689, p < 0.001, Cohen’s d = 2.182) compared to 195 

the untrained (paired t-test: t(23) = 2.782, p = 0.011, Cohen’s d = 0.568) orientation. (C) Thresholds 196 

(S/N ratio) in Full-Practice/Sham group. A two-way repeated measures ANOVA (session: pretest vs. 197 

posttest × orientation: trained vs. untrained) revealed a significant interaction (F(1,23) = 5.380, p = 198 

0.030, η2
p = 0.190), demonstrating larger learning effect for the trained (paired t-test: t(23) = 6.932, p < 199 

0.001, Cohen’s d = 1.415) compared to the untrained (paired t-test: t(23) = 4.101, p < 0.001, Cohen’s d 200 

= 0.837) orientation. The central lines in the box plot indicate the median values. The upper and lower 201 

lines represent the interquartile range (25th – 75th percentiles). Each dot represents data from one 202 

participant. *p < 0.05, ***p < 0.001, n.s. = not significant. 203 

 204 

Lastly, to statistically validate the enhanced generalization in the Reactivation/Anodal 205 

group compared with other groups, we calculated the NGI difference between the trained and 206 

untrained orientation (NGI difference = NGItrained – NGIuntrained), where lower values indicate 207 

greater transfer and higher values indicate greater specificity. A two-way independent-208 

measures ANOVA (training protocol: reactivation vs. full-practice × stimulation condition: 209 

anodal vs. sham) on NGI difference showed a significant interaction (F(1,92) = 9.755, p = 210 

0.002, η2
p = 0.096). This pattern showed that Reactivation/Anodal enhanced generalization, 211 

whereas Full-Practice/Anodal increased specificity. The divergence across protocols suggests 212 

distinct neural mechanisms for reactivation-based versus repetition-based learning, consistent 213 

with previous studies (Eisenstein et al., 2023; Kondat et al., 2024). 214 

 215 

Discussion 216 

Our study provides the first evidence that reactivation and neuromodulation interact to unlock 217 

complete learning generalization. Reactivation-based protocols have been shown to result 218 

mainly in learning specificity (Amar-Halpert et al., 2017), with a recent report suggesting 219 
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partial transfer (Kondat et al., 2025), consistent with the effects observed for the sham condition 220 

in our study. In contrast, we demonstrate that reactivation-coupled anodal tDCS 221 

enables complete learning transfer. We have replicated this result across two perceptual 222 

detection tasks with different stimulus features (orientation, motion direction), providing 223 

evidence for a perceptual plasticity mechanism that boosts generalization. In particular, our 224 

protocol may disrupt the offline consolidation of learning in visual cortex – likely due to tDCS-225 

mediated GABA reduction – thereby reducing perceptual overfitting and promoting 226 

generalization. This reduction in overfitting does not compromise learning gains, in line with 227 

previous work suggesting that reactivation-based plasticity involves higher-order areas 228 

(Kondat et al., 2024). 229 

Previous studies on repetition-based learning have shown that different forms of electrical 230 

stimulation can modulate learning outcomes in distinct ways. For instance, anodal or cathodal 231 

stimulation alters VPL in a task-specific manner (Frangou et al., 2018), while stimulation at 232 

alpha – but not theta or gamma – frequencies can enhance VPL improvements (He et al., 2022). 233 

Consistent with these findings, the present study further demonstrated that anodal tDCS 234 

selectively enhanced stimulus-specific learning. This pattern of results, that is distinct from that 235 

observed in the reactivation groups, may be explained by two factors. First, prior research 236 

suggests that excessive training in full-practice group can induce hyper-stabilization of memory 237 

traces in the visual cortex (Shibata et al., 2017), a process that may rely less on offline 238 

consolidation. As a result, the GABA reduction induced by anodal tDCS exterted a diminished 239 

impact on consolidation-related processes. Second, anodal tDCS may increase the excitatory-240 

inhibitory (E-I) ratio (Barron et al., 2016) during training sessions, thereby promoting a more 241 

plastic state in the visual cortex (Bang et al., 2018; Shibata et al., 2017) and enhancing stimulus-242 

specific learning gains in VPL following full practice. Future work is needed, integrating 243 

multimodal neuroimaging (e.g., fMRI-MRS fusion) to directly investigate functional 244 
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reorganization and neurochemical plasticity in reactivation- versus repetition-based learning 245 

(Jia et al., 2023, 2024). 246 

In sum, we propose reactivation-coupled brain stimulation as a combined intervention 247 

protocol for enhanced learning generalization at short training duration (i.e., reducing trial 248 

numbers by 80%), while maintaining learning gains. As memory reactivation mechanisms 249 

drive brain plasticity across multiple domains – including visual, motor, and mathematical 250 

learning – our reactivation-coupled anodal tDCS protocol may offer a translatable solution for 251 

clinical rehabilitation, enabling more efficient training with better generalization extending 252 

beyond the specific training conditions. 253 

 254 

Materials and Methods 255 

Participants 256 

Night-six participants took part in the reactivation-based VPL experiment. Half completed an 257 

orientation detection task (main experiment; 21.71 ± 3.25 years old, 27 females) and half a 258 

motion detection task (control experiment; 21.38 ± 2.14 years old, 28 females). Within each 259 

task, participants were randomly assigned to the Reactivation/Anodal or the Reactivation/Sham 260 

group (N = 24 for each group). Based on a previous perceptual learning study using similar 261 

stimulation method (He et al., 2022), we conducted a prior independent t-test using the reported 262 

effect size (Cohen’s d = 0.9) in G*Power (Version 3.1) (Faul et al., 2007). This analysis 263 

indicated that 24 participants per group would provide power greater than 85% to detect the 264 

tDCS effect. Note that, this sample size was also comparable to prior tDCS studies on 265 

perceptual learning (Frangou et al., 2018; He et al., 2022; Jia et al., 2022). In addition, we 266 

recruited another forty-eight participants (22.00 ± 2.30 years old, 26 females) in the repetition-267 

based VPL experiment, and randomly assigned them to the Full-Practice/Anodal or the Full-268 

Practice/Sham group (N = 24 for each group). All participants were naïve to the purpose of the 269 
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study, had normal or corrected-to-normal vision, and reported being right-handed. Written 270 

consent was obtained from all participants. The procedures used in this study were approved 271 

by the Ethics Committee at Department of Psychology and Behavioral Sciences, Zhejiang 272 

University (protocol number: 2022-061). 273 

 274 

Stimuli and apparatus 275 

Gabor patches (Gaussian windowed sinusoidal gratings) were presented in the lower-right 276 

visual field at an eccentricity of 6.5° against a uniform gray background (~35 cd/m2). The 277 

Gabor stimuli had a diameter of 5°, random phase and spatial frequency of 1 cycle/degree. The 278 

Gaussian envelope had standard deviation of 2.5°. Noise patterns from sinusoidal luminance 279 

distributions were generated and superimposed on the Gabor patches at a specific signal-to-280 

noise (S/N) ratio. For instance, a 20% S/N ratio indicates that the noise pattern replaced 80% 281 

of the pixels of the Gabor patch. 282 

Random dot kinematograms (RDKs) were presented in an annular aperture located in the 283 

right visual field at 8° eccentricity. Each display contained 400 dots (0.1° diameter) moving at 284 

a speed of 10°/s. A specific proportion of dots moved coherently in one direction, while the 285 

rest moved randomly. When a dot moved out of the aperture, it was wrapped around to reappear 286 

from the opposite side along its motion direction. 287 

The stimuli were generated using Psychtoolbox 3.0 (Brainard, 1997; Pelli, 1997) 288 

implemented in MATLAB (The MATHWORKS Inc., Natick, MA, USA). Stimuli were 289 

presented on a Dell Cathode-Ray Tube (CRT) monitor with the size of 40 × 30 cm2, resolution 290 

of 1024 × 768 and a refresh rate of 60 Hz. Gamma correction was applied to the monitor. A 291 

chin-rest was used to stabilize participants’ head position and maintain the viewing distance at 292 

72 cm.  293 

 294 
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Experimental design and statistical analysis 295 

Participants trained with the reactivation-based protocol completed five sessions in the 296 

following order: a pretest, an encoding session, two reactivation sessions, and a posttest. For 297 

participants trained with repetition-based protocol, the encoding and reactivation sessions were 298 

replaced with three standard full-practice training sessions (Figure 1A). All participants 299 

performed two-interval forced-choice orientation detection tasks throughout these sessions. 300 

Orientation detection task. As shown in Figure 1B, each trial began with a central fixation 301 

cross (400 ms), followed by two sequential stimulus displays (50 ms each) separated by a 300 302 

ms blank interval. One display contained a Gabor patch with specific S/N ratio, while the other 303 

contained pure noise (0% S/N ratio), with presentation order randomized across trials. 304 

Participants indicated which interval contained the Gabor patch via a keyboard press.  305 

Participant’s performance in the task was measured using a 2-down 1-up staircase with 306 

10 reversals converging at 70.7% performance. In each staircase run, the S/N started with 15% 307 

and adaptively changed with a step size of 0.05 log units. Each staircase run consisted of around 308 

40 trials (1 – 2 mins). We calculated the thresholds as the geometric mean of the last six 309 

reversals. The reference orientation was set at 55° for the trained stimulus and 125° for the 310 

untrained stimuli, with these assignments counterbalanced across participants.  311 

Behavioral test session. To stabilize fixation and familiarize participants with the task 312 

before tests, they first completed a 30-trial practice run (20% S/N ratio, above threshold). 313 

During practice run, auditory feedback was provided for incorrect responses. In both pretest 314 

and posttest, they completed four staircase runs of the orientation detection task (two runs per 315 

condition in random order). Detection thresholds were calculated by averaging the thresholds 316 

from the two runs per condition. No feedback was provided during tests. 317 

Training session: Reactivation or Full-Practice. All participants were trained on an 318 

orientation detection task with fixed orientation and location throughout training sessions. 319 
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Auditory feedback was provided for incorrect trials. The Full-Practice group (i.e., repetition-320 

based VPL) completed three training sessions (16 staircase runs per session), while the 321 

Reactivation group performed 16 staircases runs on the encoding session, followed by two 322 

reactivation sessions, each consisting of three staircase runs. This design followed the protocol 323 

of a prior study (Bang et al., 2018), while also matched the duration of the online stimulation 324 

protocol (see tDCS section for details).  325 

Behavioral data analysis. For each group and each orientation, we calculated a normalized 326 

learning gain index (NGI = [(Pre-test threshold – Post-test threshold) / ((Pre-test threshold + 327 

Post-test threshold) / 2)] × 100 %). Paired t-tests on NGI were used to compare performance 328 

between trained and untrained orientations within participants. To examine differences across 329 

multiple groups, we applied either independent t-tests or mixed ANOVAs on NGI. To quantify 330 

the amount of transfer effects, we calculated the NGI difference between the trained and 331 

untrained orientation (NGI difference = NGItrained – NGIuntrained). Lower NGI difference reflects 332 

more transfer, while higher NGI difference reflects greater specificity. A two-way independent-333 

measures ANOVA (training protocol × stimulation condition) was applied on the NGI 334 

difference. To evaluate the strength of evidence for the lack of significant effects, we conducted 335 

parallel Bayesian analyses (Wagenmakers, 2007) using standard priors as implemented in 336 

JASP Version 0.17.1.0 (JASP Team, 2023). 337 

Control experiment: motion detection task. To examine the robustness of the generalizable 338 

learning effect induced by reactivation-coupled brain stimulation, we replicated the 339 

reactivation-based experiment with motion stimuli (RDKs). The behavioral task procedure was 340 

similar to those used in the orientation detection task, with either anodal or sham stimulation. 341 

On each trial, two sequential displays were presented: one contained a signal RDKs with a 342 

given motion coherence, and the other was a noise field with 0% coherence (Figure 2A). The 343 

reference direction was set at 60° for the trained stimulus and 300° for the untrained stimuli, 344 
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with these assignments counterbalanced across participants. Within each staircase run, the 345 

initial motion coherence was set to 15% and was adjusted adaptively using a step size of 0.05 346 

log units. 347 

Transcranial direct current stimulation (tDCS). tDCS was delivered using a battery-348 

driven, constant current stimulator with a pair of rubber electrodes in a 5 × 7 cm2 saline-soaked 349 

synthetic sponges. In the main experiments of orientation detection task , the anode electrode 350 

was placed over the visual cortex (O1, 10-20 system) with conductive cream, while in the 351 

control experiment of motion detection task, the anode electrode was placed approximately 3 352 

cm above the mastoid–inion line and 5 cm left of the midline in the sagittal plane (left V5, 353 

Battaglini et al., 2017). The cathode electrodes was positioned at the vertex (Cz) across 354 

experiments. Stimulation parameters followed safety guidelines. For the anodal tDCS 355 

condition, a direct current with an intensity of 1.5 mA was applied for 20 minutes, with a 30 s 356 

fade in/out periods to minimize cutaneous sensations. We used online stimulation protocol (i.e., 357 

stimulation during training). In particular, the current flow was initiated 10 minutes before task 358 

onset (rest period) and 10 minutes during the task. For the sham condition, participants received 359 

a 30 s fade-in phase followed by a 30 s fade-out at the beginning and end of the stimulation 360 

run, with no active stimulation in between. This sham protocol has been reported to effectively 361 

keep participants blinded to the stimulation conditions (Gandiga et al., 2006). 362 

  363 
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